WOOFER 32W/8878T01

The 32W/4878T01 the most powerful woofer designed by Scan-speak. Its large 3” voice coil and low resonance frequency is perfect to reproduce low to mid frequencies at with high efficiency. It features a brand new type of paper-sandwich cone with a special foam filling technology (patented) that gives the cone very high stiffness and relative low weight. The motor system has heavy-duty copper sleeves for optimizing eddy currents effect and minimized self-induction.

KEY FEATURES:

- Paper sandwich cone with Patented foam filling
- Spider with balanced woven in tinsel leads
- 3” Voice coil, Titanium former and paper reinforced
- Patented Symmetrical Drive motor
- Long linear excursion (+/- 7.5 mm)
- Stiff and strong die cast aluminium chassis

T-S Parameters

- Resonance frequency [fs] 19.1 Hz
- Mechanical Q factor [Qms] 5.69
- Electrical Q factor [Qes] 0.35
- Total Q factor [Qt] 0.33
- Force factor [Bl] 15.6 Tm
- Mechanical resistance [Rms] 2.4 kg/s
- Moving mass [Mms] 114.8 g
- Compliance [Cms] 0.60 mm/N
- Effective diaph. diameter [D] 129 mm
- Effective piston area [Sd] 526 cm²
- Equivalent volume [Vas] 234 l
- Sensitivity (2.83V/1m) 89 dB
- Ratio Bl/√Re 6.3 N/√W
- Ratio fs/Qt 57.9 Hz

Electrical Data

- Nominal impedance [Zn] 8 Ω
- Minimum impedance [Zmin] 7.2 Ω
- Maximum impedance [Zo] 56.8 Ω
- DC resistance [Re] 6.1 Ω
- Voice coil inductance [Le] 0.68 mH

Power Handling

- 100h RMS noise test (IEC 17.1) 150 W
- Long-term max power (IEC 17.3) 400 W

Voice Coil & Magnet Data

- Voice coil diameter 75 mm
- Voice coil height 23 mm
- Voice coil layers 2
- Height of gap 8 mm
- Linear excursion ± 7.5 mm
- Max mech. excursion ± 28 mm
- Unit weight 7.5 kg

Notes:

IEC specs. refer to IEC 60268-5 third edition. All Scan-Speak products are RoHS compliant. Data are subject to change without notice. Datasheet updated: April 5, 2013.
Advanced Parameters (Preliminary)

Electrical data
- Resistance \([R_e']\) - Ω
- Free inductance \([L_{eb}]\) - mH
- Bound inductance \([L_e]\) - mH
- Semi-inductance \([K_e]\) - SH
- Shunt resistance \([R_{ss}]\) - Ω

Mechanical data
- Force Factor \([B_l]\) - Tm
- Moving mass \([M_{ms}]\) - g
- Compliance \([C_{ms}]\) - mm/N
- Mechanical resistance \([R_{ms}]\) - kg/s
- Admittance \([A_{ms}]\) - mm/N